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Abstract. We study the performance of thedgsol code for the solution of distance geometry prob-
lems with lower and upper bounds on distance constraints. Thedgsol code uses only a sparse set
of distance constraints, while other algorithms tend to work with a dense set of constraints either by
imposing additional bounds or by deducing bounds from the given bounds. Our computational results
show that protein structures can be determined by solving a distance geometry problem withdgsol
and that the approach based ondgsol is significantly more reliable and efficient than multi-starts
with an optimization code.
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1. Introduction

Distance geometry problems for the determination of protein structures are spe-
cified by a subsetS of all atom pairs and by the distances between atomsi and
j for (i, j) ∈ S. In practice, lower and upper bounds on the distances are given
instead of precise values. The distance geometry problem with lower and upper
bounds is to find a set of positionsx1, . . . , xm in R3 such that

li,j 6‖ xi − xj ‖6 ui,j , (i, j) ∈ S, (1.1)

whereli,j andui,j are lower and upper bounds on the distances, respectively. Re-
views and background on the application of distance geometry problems to protein
structure determination can be found in Crippen and Havel [4], Havel [11,12],
Torda and Van Gunsteren [30], Kuntz, Thomason and Oshiro [19], Brünger and
Nilges [3], and Blaney and Dixon [2].

The distance geometry problem (1.1) can be formulated as a global optimization
problem. The standard formulation, suggested by Crippen and Havel [4], is in terms
of finding the global minimum of the function

f (x) =
∑
i,j∈S

pi,j (xi − xj ), (1.2)
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where the pairwise functionpi,j : Rn 7→ R is defined by

pi,j (x) = min2

{‖ x ‖2 −l2i,j
l2i,j

, 0

}
+max2

{‖ x ‖2 −u2
i,j

u2
i,j

}
. (1.3)

Clearly,x = {x1, . . . , xm} solves the distance geometry problem if and only ifx is
a global minimizer off andf (x) = 0.

In practice, distance geometry problems also impose chirality constraints on
some of the atoms. These constraints can be handled by adding a term to the
potential function (1.2) whenever chirality constraints are imposed on the atoms
xi, xj , xk , xl. The chirality constraint function (for example, Havell [11,12]) is
usually of the form

ci,j,k,l (x) = (vol(xi, xj , xk, xl)− vi,j,k,l )2,
where vol is the oriented volume of the four atoms andvi,j,k,l is a target value. The
approach in this paper can be extended to these chirality constraints, but since our
aim is to develop reliable algorithms for the distance geometry problem (1.1), we
consider only the potential function (1.2).

The embed algorithm [4,11,12] and the alternating projection algorithm [7,8]
are the most promising techniques for the solution of the distance geometry prob-
lem (1.2). For related work, see [1–3,19]. General global optimization techniques
(multi-starts with a local optimization algorithm, simulated annealing, genetic al-
gorithms) and molecular dynamics algorithms could also be used, but they have
not been shown to be suitable for distance geometry problems.

The algorithm that we propose in this paper works with the sparse set of distance
constraintsS. In contrast, other algorithms for distance geometry tend to work with
a dense set of constraints by either imposing additional bounds or by deducing
bounds from the given bounds. For example, the first phase of theembed algorithm
determinesli,j andui,j by using the relationships

ui,j = min(ui,j , ui,k + uk,j ), li,j = max(li,j , li,k − uk,j , lj,k − uk,i),
which can be deduced from the triangle inequality. Given a full set of bounds, dis-
tancesδi,j ∈ [li,j , ui,j ] are chosen, and an attempt is made to compute coordinates
x1, . . . , xm by solving the special distance geometry problem

‖ xi − xj ‖= δi,j , (i, j) ∈ S. (1.4)

This attempt usually fails because the boundsδi,j tend to be inconsistent, but it can
be used to generate an approximate solution. As a result, theembed algorithm may
require many trial choices ofδi,j in [li,j , ui,j ] before a solution to problem (1.4) is
found.

Other algorithms that work with a sparse set of distance constraints do not aim
to solve the distance geometry problem (1.1), but to minimize a potential energy
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function that incorporates distance constraints and other information to determine
the protein structure. For work in this direction, see [15,28].

In our approach, we use Gaussian smoothing to transformf into a smoother
function with fewer minimizers. An optimization algorithm (the limited-memory
variable-metric codevmlm is then applied to the transformed function, and con-
tinuation techniques are used to trace the minimizers of the smooth function back to
the original functon. An immediate advantage of our approach is that the work per
iteration is proportional toS, which for sparse distance data should be proportional
to the number of atomsm.

Gaussian smoothing was first used, by Scheraga and coworkers [16–18,25,26],
in the diffusion equation method for protein conformation. In that application the
Gaussian transform is usually evaluated by approximating the function and then
transforming the approximation. On the other hand, Moré and Wu [22] showed
that for distance geometry applications we can evaluate the Gaussian transform of
(1.2) directly if the potentialpi,j is a radial function, that is, a function of the form
pi,j (x) = hi,j (‖ x ‖).

The aim of this paper is to show that continuation algorithms, based on Gaussian
smoothing, can be used to develop an efficient and reliable code for the solution
of the distance geometry problem (1.1). The background needed to understand our
code,dgsol , is presented in Sections 2 and 3. Section 2 outlines the smoothing
properties of the Gaussian transform, while Section 3 presents our proposal to
determine the Gaussian transform by using a discrete Gauss-Hermite transform.

We present an outline ofdgsol in Section 4. Numerical results appear in Section
5. We pay special attention to the choice of continuation parameters because this is
an important and unresolved issue in the use of Gaussian smoothing. Our numerical
results, based on data drawn from the PDB data bank, show thatdgsol can be used
to determine the structure of protein fragments with up to 200 atoms.

We emphasize that the determination of protein structures from distance data
requires appropriate data and an algorithm to determine solutions to (1.1). The
issue of what distance data is needed has been addressed in several recent papers
[1,15,20,28]. In this paper we do not address this issue, but concentrate on showing
thatdgsol can be used to obtain solutions to the distance geometry problem (1.1)
for a wide range of distance data. To our knowledge, no other algorithm can make
this claim. We plan to conduct additional testing with larger protein fragments and
more realistic distance constraints.

2. Global smoothing

An appealing idea for finding the global minimizer of a function is to transform the
function into a smoother function with fewer local minimizers, apply an optimiz-
ation algorithm to the transformed function, and trace the minimizers back to the
original function. A transformed function is a coarse approximation to the original
function, with small and narrow minimizers being removed, while the overall struc-
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Figure 2.1. The Gaussian transform of a function. The original function(λ = 0) is on the left,
while λ = 0.3 is on the right.

ture of the function is maintained. This property allows the optimization algorithm
to skip less interesting local minimizers and to concentrate on regions with average
low-function values where a global minimizer is most likely to be located.

The smoothing transform, called the Gaussian transform, depends on a para-
meterλ that controls the degree of smoothing. The original function is obtained
if λ = 0, while smoother functions are obtained asλ increases. The Gaussian
transform〈f 〉λ of a functionf : Rn 7→ R is

〈f 〉λ(x) = 1

πn/2λn

∫
Rn
f (y)exp

(
−‖ y − x ‖

2

λ2

)
dy. (2.1)

The value〈f 〉λ(x) is an average off in a neighbourhood ofx, with the relative size
of this neighborhood controlled by the parameterλ. The size of the neighbourhood
decreases asλ decreases, so that whenλ = 0, the neighborhood is the centerx.
The Gaussian transform〈f 〉λ can also be viewed as the convolution off with the
Gaussian density function.

The Gaussian transform is a linear, isotone (order-preserving) operator that
reduces the high-frequency components off . Moreover, the Gaussian transform
commutes with differentiation so that the Gaussian transform of the gradient (Hes-
sian) is the gradient (Hessian) of the Gaussian transform. These properties of the
Gaussian transform are not usually shared by other approaches to smoothing. For
additional discussion of these properties, see Wu [31] and Moré and Wu [23,24].

We illustrate the transformation process in Figure 2.1 with a function that is the
sum of four Gaussians. The original function (λ = 0) is on the left whileλ = 0.3
is on the right. Note that the original function has four maximizers but that two of
these maximizers have disappeared atλ = 0.3, and another minimizer is likely to
disappear ifλ is increased further. Figure 2.1 shows that the original function is
gradually transformed into a smoother function with fewer local maximizers and
that the smoothing increases asλ increases.
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3. Computing the Gaussian transform of distance geometry functions

Computing the Gaussian transform requires the evaluation ofn-dimensional in-
tegrals, but for many functions that arise in practice, it is possible to compute
the Gaussian transform explicitly in terms of one-dimensional transforms. In par-
ticular, we now show that we can compute the Gaussian transform for distance
geometry functions of the form (1.2) if the potentialpi,j is a radial function, that
is, a function of the formpi,j (x) = hi,j (‖ x ‖).

Moré and Wu [22] showed that the Gaussian transform for the distance geo-
metry function (1.2) can be expressed in the form

〈f 〉λ(x) =
∑
i,j∈S

1√
2πri,j

∫ +∞
−∞

(ri,j + λs)hi,j (ri,j + λs)exp

(
−1

2
s2

)
ds

(3.1)

whereri,j =‖ xi − xj ‖. This expression is valid for all pairwise potentials of
the formpi,j (x) = hi,j (‖ x ‖). We are interested in the case where the pairwise
potentialpi,j is given by (1.2), so that the functionr 7→ hi,j (r) is defined by

hi,j (r) =
2

min

{
r2 − l2i,j
l2i,j

,0

}
+ 2

max

{
r2 − u2

i,j

u2
i,j

}
. (3.2)

The one-dimensional integrals that appear in (3.1) can be evaluated explicitly in
special cases. In particular, whenli,j = ui,j for all (i, j) ∈ S, the Gaussian
transform can be expressed [23] in the form

〈f 〉λ(x) =
∑
i,j∈S

[
(‖ xi − xj ‖2 −δ2

i,j )
2+ 10λ2 ‖ xi − xj ‖2

]+ γ,
whereγ is a constant that depends onλ.

An interesting property of the Gaussian transform is that the Gaussian transform
(3.1) is infinitely differentiable wheneverλ > 0. On the other hand, the original
potential (1.2), with the pairwise potentialpi,j defined by (1.3), is only piecewise
twice differentiable. Moré and Wu [23,24] provide additional information on the
properties of the Gaussian transform.

The one-dimensional integrals that appears in the Gaussian transform (3.1) can
be approximated by Gaussian quadratures. If we use a Gaussian quadrature withq

nodes, we obtain the Gauss-Hermite approximation

〈f 〉λ,q(x) =
∑
i,j∈S

1

ri,j

q∑
k=1

wk(ri,j + λsk)hi,j (ri,j + λsk), (3.3)

wherewk andsk are standard weights and nodes for the Gaussian quadrature for
integrals of the form

1√
2π

∫ +∞
−∞

g(s)exp

(
−1

2
s2

)
ds.
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Figure 3.1. The function[h]λ,q for λ = 0, 0.5, 1.0, 1.5 andq = 10.

The weights and nodes can be found in the tables of Stroud and Secrest [29] or
computed with thegauss subroutine inORTHOPOL [6].

All of our numerical results are based on the Gauss–Hermite transform (3.3).
We can gain insight into this transformation by noting that

〈f 〉λ,q(x) =
∑
i,j∈S
[hi,j ]λ,q(ri,j ),

where[h]λ,q is a function of the distancer defined by

[h]λ,q(r) = 1

r

q∑
k=1

wk(r + λsk)h(r + λsk).

The function[h]λ,q agrees with the piecewise twice-differentiable function

h(r) = 2
min

{
r2− l2
l2

,0

}
+ 2

max

{
r2− u2

u2
,0

}
(3.4)

for λ = 0, but asλ increases, we obtain a smoother version of the function. This
can be seen clearly in Figure 3.1, where we have plotted[h]λ,q for λ = k/2 with
06 k 6 3, q = 10.

Figure 3.1 suggests that[h]λ,q is convex forλ > λc for someλc > 0. This is
not true in general, but holds whenh is defined by (3.4). The value ofλc depends
on the boundsl andu, but we do not fully understand this relationship. Forl = u,
it is easy to show thatλc = u/

√
5. Plots of[h]λ,q for l < u suggest thatλc 6

√
2u,

and therefore

λc ∈
[
u√
5
,
√

2u

]
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This is consistent with Figure 3.1, wherel = 1, u = 2, and[h]λ,q is convex for
λ = 1.5.

The value ofλc is important because if[hi,j ]λ,q is monotone and convex for
r > 0 and (i, j) ∈ S, then the Gauss–Hermite transform (3.3) is convex. This
is usually undesirable; a preferable strategy is to chooseλ so that only some of
the functions[hi,j ]λ,q are convex. We will return to this point when we discuss
numerical results.

4. Optimization algorithms

The algorithm that we use to solve the distance geometry problem (1.1) searches
for a global minimizer of the function defined by (1.2) and (1.3) with a continu-
ation algorithm based on the Gauss-Hermite transform〈f 〉λ,q . Given a sequence of
smoothing parameters

λ0 > λ1 > · · · > λp = 0,

the continuation algorithm uses a local minimization algorithm to determine a
minimizer xk+1 of 〈f 〉λk,q . The local minimization algorithm uses the previous
minimizerxk as the starting point for the search. In this manner a sequence of min-
imizersx1, . . . , xp+1 is generated, withxp+1 a minimizer off and the candidate
for the global minimizer. Algorithmdgsol specifies the continuation algorithm.

Algorithm dgsol
Choose a random vectorx0 ∈ Rm×3.
for k = 0,1, . . . , p

Determinexk+1 = locmin (〈f 〉λk,q, xk).
end do

In our notation,locmin (〈f 〉λk,q, xk) is the minimizer generated by a local minimiz-
ation algorithm with the starting pointxk. The local minimization algorithm has to
be chosen with some care because〈f 〉λ,q is not twice continuously differentiable.
The Hessian matrix is discontinuous at points where the argument ofhi,j coincides
with eitherli,j orui,j . We cannot expect to avoid these discontinuities, in particular,
if li,j andui,j are close.

For locmin we used a limited-memory variable metric algorithm of the form

xk+1 = xk − αkHk∇f (xk),
whereαk > 0 is the search parameter, and the approximationHk to the inverse
Hessian matrix is stored in a compact representation that requires the storage of
only 2nv vectors, wherenv is chosen by the user. The compact representation ofHk
permits the efficient computation ofHk∇f (xk) in (8nv +1)n flops, wheren = 3m
is the number of variables; all other operations in an iteration of the algorithm
require 11n flops.
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We used the variable-metric limited-memory codevmlm in MINPACK-2. For
additional information on this code, see

http://www.mcs.anl.gov/home/more/minpack2

The performance of thevmlm code depends on the amount of memory specified
by nv and on the tolerancesτr andτa. We usednv = 10. The tolerancesτr and
τa specify the accuracy of the minimizer;vmlm terminates with an iteratex if the
code decides that either the relative convergence test

|f (x)− f (x∗)| 6 τr |f (x∗)|
or the absolute convergence test

max{|f (x)|, |f (x∗)|} 6 τa
is satisfied for some minimizerx∗ of f . In our numerical results we usedτr = τa =
10−8, which are not considered stringent values.

The random vectorx0 ∈ Rm×3 used for algorithmdgsol depends on the distance
data. In particular, we chose the coordinatesxi ∈ R3 of the starting point so that
‖ xi − xj ‖= δi,j for some(i, j) in S. Algorithm struct specifies the starting point

Algorithm struct
SetL = {1, . . . , m}.
do until L is empty

Choosei ∈ L.
SetMi = {j : (i, j) ∈ S, j ∈ L}.
For eachj ∈Mi , generatexj ∈ R3 such that‖ xi − xj ‖= δi,j .
Removei from L.

end do

The starting point generated by this algorithm satisfies at leastm − 1 distance
constraints, wherem is the number of atoms. Thus, the starting point is a solution
to the distance geometry problem ifS contains less thanm constraints.

We also experimented with starting points that were chosen randomly, but since
our results were not strongly dependent on the method used to generate the starting
points, we present results for only the method specified above.

5. Computational experiments

In our computational experiments we studied the distance geometry problem (1.1)
with the pairwise potentialpi,j defined by (1.3). We used thedgsol algorithm as
outlined in Section 4 and the Gauss–Hermite transform (3.3) withq = 10 nodes in
the Gaussian quadrature.

We testeddgsol on data derived from protein fragments of a DNA-binding
protein [10,27] available (ID code 1GPV) in the PDB data bank. We considered



DISTANCE GEOMETRY OPTIMIZATION FOR PROTEIN STRUCTURES 227

protein fragments with 100 and 200 atoms. For each fragment, we generated a set
of distances{δi,j } by using all distances between the atoms in the same residue as
well as those in the neighbouring residues. Formally, ifRk is thek-th residue, then

S = {(i, j) : xi ∈ Rk, xj ∈ (Rk ∪ Rk+1)} (5.1)

specifies the set of distances. This is not the only way to generate the sparse setS.
For example, Le Grand, Elofsson, and Eisenberg [20] generateS by setting

S = {(i, j) : ‖ xi − xj ‖6 c} (5.2)

for some cutoffc < 0.
The main aim of the computational experiments is to show that thedgsol code,

which is based on Gaussian smoothing, provides a reliable and efficient approach to
the solution of the distance geometry problem (1.1). In our computational results,
a set of coordinatesx ∈ Rm×3 solves the distance geometry problem (1.1) if

(1− τd)li,j 6‖ xi − xj ‖6 ui,j (1+ τd), (i, j) ∈ S, (5.3)

for some toleranceτd . We usedτd = 10−2 since this tolerance reflects the accuracy
available for bond lengths [5].

A secondary aim of the computational experiments is to study the dependence
of the solution structures on variations on the boundsli,j andui,j by setting

li,j = (1− ε)δi,j , ui,j = (1+ ε)δi,j , (5.4)

for someε ∈ (0,1). With this formulation, we are able to study the behavior
of the structures asε varies over(0,1). We variedε over [0.04, 0.16] since this
translates into a 4–16% deviation from the expected value for the bond length.
These variations seem to be typical [5].

In many of our numerical results we examine the performance ofdgsol asε
andλ vary. Indgsol we use uniformly spaced smoothing parameters

λk = λ0

(
1− k

p

)
, 06 k 6 p.

The numberp of continuation steps was set to

p = d20λ0e.
This choice implies that the separationλk+1 − λk between consecutive smoothing
parameters is about 0.05.

The choice ofλ0 is important. If we start withλ0 large, then all the information
in the function is destroyed, and it is difficult to trace multiple paths. If we choose
λ0 small then〈f 〉λ0,q will have many minimizers. Choosingλ0 so that〈f 〉λ0,q has
a few minimizers allows us to trace multiple paths, and thus increases the chances
of determining a global minimizer.
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A reasonableλ0 is obtained if half of the[hi,j ]λ0,q are not convex. This provides
an automatic choice forλ0 that is not large and that works well. We can determine
λ0 by recalling that (see Section 3) for each functionhi,j there is aλi,j such that
[hi,j ]λ,q is convex forλ > λi,j . We use

λi,j =
(

1√
5
ρi,j +

√
2(1− ρi,j )

)
ui,j , λi,j = li,j − 1

ui,j − 1
,

which specifies thatλi,j is a convex combination of 1/
√

5 and
√

2. If li,j = ui,j then
λi,j = 1/

√
5, which we know guarantees convexity of[hi,j ]λ,q . This observation

is important because our datali,j ≈ ui,j . We have verified, by plots of[hi,j ]λ,q
similar to those in Figure 3.1, that for this choice ofλi,j , the function[hi,j ]λ,q is
convex forλ > λi,j . It would be interesting to obtain a formal proof of this result.
λn future implementation, we will also useλi,j = li,j

ui,j
to avoid dividing a zero in

caseui,j = 1.
Given λi,j as defined above, we now chooseλ0 as the median of all theλi,j .

With this choice, half of the pairwise functions[hi,j ]λ0,q should not be convex.
Hence, the initial function〈f 〉λ0,q is smooth but not necessarily convex.

5.1. EXPERIMENT 1

In our first computational experiment we comparedgsol with vmlm from a set
of 100 random starting points generated by algorithmstruct of Section 4. We did
this comparison because multi-starts with a local optimization code is a standard
approach to solving global optimization problems. Comparisons with simulated
annealing and genetic algorithms would also be of interest but are unlikely to
perform better than multi-starts unless they also rely on optimization software to
produce accurate structures.

We conducted two tests withε = 0.04, one withvmlm and the other with
dgsol . We compare the quality of the solutions obtained byvmlm anddgsol by
computing the potential function (1.2) at the final iterate of the algorithm. These
function values are then sorted and plotted in Figure 5.1.

An immediate observation that can be made from Figure 5.1 is that the potential
function (1.2) has at least 100 distinct minimizers. We justify this observation
by noting that all the minimizers obtained by thevmlm algorithm have distinct
function value. This observation is of interest because it is usually difficult to find
the global minimizer when the optimization problem has many minimizers.

The results in Figure 5.1 show that thevmlm algorithm fails to find the global
minimizer in all cases. This is perhaps not surprising because thevmlm code is a
local minimization algorithm. Nevertheless, we expected to find the global solution
in at least a few cases. However, the results in Figure 5.1 show thatvmlm is able
to find only local minimizers with relatively high function values; in all cases the
potential function value is at least 0.5.
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Figure 5.1. Potential function values for multi-startvmlm anddgsol for ε = 0.04.

The results in Figure 5.1 also show that the smoothing approach ofdgsol works
quite well for this problem and is able to find the global solution in 41 cases. Also
note that in all casesdgsol finds a global minimizer or a local minimizer with low
function value.

5.2. EXPERIMENT 2

In our second experiment we compare the performance of the multi-startvmlm
with dgsol for problems withε > 0 and for both the 100-atom and 200-atom frag-
ments. In each case we used the 100 random starting points generated by algorithm
struct of Section 4 and counted the number of (global) solutions found by each
algorithm. Recall that for these results we count a set of coordinatesx ∈ Rm×3 as a
solution to the distance geometry problem (1.1) if (5.3) is satisfied withτd = 10−2.
Results for this experiment appear in Table 5.1.

Table 5.1.Distance geometry solutions obtained byvmlm and
dgsol

100-atom fragment 200-atom fragment

ε vmlm dgsol ε vmlm dgsol

0.04 1 80 0.04 0 41

0.08 1 74 0.08 0 66

0.12 8 100 0.12 2 97

0.16 47 100 0.16 9 100
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The results in Table 5.1 show thatdgsol is significantly more reliable than the
multi-startedvmlm for both the 100-atom fragment and the 200-atom fragment.
For both algorithms the reliability increases withε. This result is to be expected
because asε increases, the measure of the solution set also increases. In other
words, if x ∈ Rn satisfies (1.1) forli,j and ui,j specified by (5.4), thenx also
satisfies (1.1) for all largerε.

Note that the reliability of both algorithms decreases as we go from the 100-
atom fragment to the 200-atom fragment. This result is to be expected because
the number of minimizers of the distance geometry problem also increases as the
number of atoms increases.

We emphasize that we have been usingdgsol with 100 starting points to test
the reliability ofdgsol . In practice we can expect to find a global minimizer after
at mostsixstarting points. This rule of thumb is justified by the results in Table 5.1,
which show that in all cases we have 40% reliability, and thus a standard calculation
shows that after six trials we have a 95% chance of finding a global minimum.

5.3. EXPERIMENT 3

In general, the distance geometry problem (1.1) can have many solutions, so there
is no reason to expect that the structures generated bydgsol will agree with the
structure that was used to generate the data. In this experiment we study the rela-
tionship between the structures obtained for variousε and the original data.

We compare structures by measuring the deviation between the coordinates
and the distances for the generated structure and the original structure. A stand-
ard measure for comparing structures is the coordinate RMSD (root-mean-square-
deviation)

EC = min


(

1

m

m∑
i=1

‖ yi −Qxi ‖2
)1/2

: Q ∈ R3×3, orthogonal

 , (5.5)

wherem is the number of atoms in the structure. Optimal superposition by transla-
tion is assured if the structures{xi} and{yi} are translated so their center of gravity
is at the origin. In Table 5.2 we present the results of computingEC for the global
solutions found bydgsol .

The computation of the coordinate errorEC is known as the orthogonal Pro-
crustes problem in the numerical analysis literature;EC can be computed accur-
ately and efficiently from the singular value decomposition of the 3× 3 matrix
XT Y , whereX = [x1, . . . , xm] andY = [y1, . . . , ym]. For details see, for example,
Golub and VanLoan [9, page 582].

The coordinate errorEC is commonly used to measure the deviation between
structures. In particular, many researchers require that structures have anEC of 1–
2 Å to be considered similar, while others only require anEC of 2–3 Å. These
criteria are not universally accepted sinceEC has a number of deficiencies. In
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Table 5.2.Coordinate errorEC for 100-atom (left)
and 200-atom (right) fragments

EC (RMSD) EC (RMSD)

ε Min Ave ε Min Ave

0.04 0.063 0.067 0.04 1.5 1.7

0.08 0.11 0.12 0.08 1.5 1.9

0.12 0.27 0.60 0.12 1.4 2.2

0.16 0.37 1.0 0.16 0.7 2.9

particular,EC is dependent on the scaling of the coordinates. For a discussion of
these deficiencies, see Mairov and Crippen [21].

If we accept the view that proteins withEC of 2–3 Å are similar, then the
results in Table 5.2 show that, on the average,dgsol is able to find structures that
are similar to the original structure. If we adopt the more stringent criterion that
structures withEC of 1–2 Å are similar, then our results show thatdgsol finds
structures that are similar ifε 6 0.08, that is, if the lower and upper bounds differ
by about 16%. If we increaseε past 0.08 then the averageEC becomes larger than
2 Å, but, as shown by the smallestEC , we are still able to find similar structures.

We did not expect to find small values forEC since our data does not include all
the distances, but only the distances between successive residues in the sequence.
Moreover, note that we are not including all the distances within a given cutoff, as
when the sparsity setS is specified by (5.2).

5.4. EXPERIMENT 4

In the last experiment we did not consider the performance ofdgsol . Instead, we
wanted to verify, computationally, that the number of minimizers of the Gauss–
Hermite transform〈f 〉λ,q decreases asλ increases. This experiment is interesting
from a theoretical viewpoint because it provides insight into the smoothing ap-
proach. We usedvmlm with the 100 random staring points generated by algorithm
struct on the 200-atom fragment.

The number of distinct minimizers found byvmlm is plotted in Figure 5.2. For
these results, minimizersx1 andx2 of 〈f 〉λ,q are declared to be the same if

|〈f 〉λ,q(x1)− 〈f 〉λ,q(x2)| 6 τr max{|〈f 〉λ,q(x1)|, |〈f 〉λ,q(x2)|},
whereτr = 10−6, or if

max{|〈f 〉λ,q(x1)|, |〈f 〉λ,q(x2)|} 6 τa,
whereτa = 10−2. In other words, the minimizers are declared to be equal if they
are smaller thanτa, or if they are larger thanτa and their relative error is at mostτr .
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Figure 5.2. Number of minimizers of〈f 〉λ,q as a function ofλ for ε = 0.04.

The number of minimizers is sensitive to the choice ofτr andτa, but the general
trend is clear. The results in Figure 5.2 show that, as predicted by the theory, the
number of minimizers of〈f 〉λ,q decreases asλ increases. Also note that the initial
drop in the number of minima is dramatic asλ varies in(0,1).

6. Concluding remarks

Our computational results suggest that protein structures can be determined by
solving a distance geometry problem withdgsol and that the approach based on
dgsol is significantly more reliable and efficient than multi-starts with an optim-
ization code. Our results also raise a number of interesting issues that we plan to
address in future work. In particular, we wish to expand our testing to larger protein
fragments (possibly a complete protein) and to distance data generated from NMR
experiments. Another interesting issue is the dependence of the structures on the
distance dat a. From a mathematical viewpoint, we do not know when structures
can be determined uniquely with exact, but incomplete distance data. For some
results in this direction, see Hendrickson [13,14].
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