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Abstract. We study the performance of tldgsol code for the solution of distance geometry prob-
lems with lower and upper bounds on distance constraints.dgt® code uses only a sparse set

of distance constraints, while other algorithms tend to work with a dense set of constraints either by
imposing additional bounds or by deducing bounds from the given bounds. Our computational results
show that protein structures can be determined by solving a distance geometry probleatgsulith

and that the approach based dgsol is significantly more reliable and efficient than multi-starts
with an optimization code.
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1. Introduction

Distance geometry problems for the determination of protein structures are spe-
cified by a subses of all atom pairs and by the distances between atomusd

j for (i, j) € 4. In practice, lower and upper bounds on the distances are given
instead of precise values. The distance geometry problem with lower and upper
bounds is to find a set of positions, . . . , x,, in R3 such that

Lij <l xi —x; I<u;;, i, j) €4, (1.1)

where/; ; andu; ; are lower and upper bounds on the distances, respectively. Re-
views and background on the application of distance geometry problems to protein
structure determination can be found in Crippen and Havel [4], Havel [11,12],
Torda and Van Gunsteren [30], Kuntz, Thomason and Oshiro [19], Bringer and
Nilges [3], and Blaney and Dixon [2].

The distance geometry problem (1.1) can be formulated as a global optimization
problem. The standard formulation, suggested by Crippen and Havel [4], is in terms
of finding the global minimum of the function

fx) = Z pi.j(xi — x;), (1.2)

i,jed
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where the pairwise functiop; ; : R" — R is defined by

x || =12, x |2 —u?,
[),’J()C) = min® {””fl’], O} +ma)g{””%} . (13)
I, u?.
L] L]
Clearly,x = {x1, ..., x,,} solves the distance geometry problem if and only i

a global minimizer off and f (x) = 0.

In practice, distance geometry problems also impose chirality constraints on
some of the atoms. These constraints can be handled by adding a term to the
potential function (1.2) whenever chirality constraints are imposed on the atoms
Xi, Xj, X, x;. The chirality constraint function (for example, Havell [11,12]) is
usually of the form

2
Cijr1(X) = (VOl(x;, X, Xp, Xp) — i j i),

where vol is the oriented volume of the four atoms apg, ; is a target value. The
approach in this paper can be extended to these chirality constraints, but since our
aim is to develop reliable algorithms for the distance geometry problem (1.1), we
consider only the potential function (1.2).

Theembed algorithm [4,11,12] and the alternating projection algorithm [7,8]
are the most promising techniques for the solution of the distance geometry prob-
lem (1.2). For related work, see [1-3,19]. General global optimization techniques
(multi-starts with a local optimization algorithm, simulated annealing, genetic al-
gorithms) and molecular dynamics algorithms could also be used, but they have
not been shown to be suitable for distance geometry problems.

The algorithm that we propose in this paper works with the sparse set of distance
constraintss. In contrast, other algorithms for distance geometry tend to work with
a dense set of constraints by either imposing additional bounds or by deducing
bounds from the given bounds. For example, the first phase efrthed algorithm
determines; ; andu; ; by using the relationships

wij = min(u; ;, u; + ug, ), Lij=max{l;j, lix —ugj, ljx — uri),

which can be deduced from the triangle inequality. Given a full set of bounds, dis-
tancess; ; € [/; j, u; ;] are chosen, and an attempt is made to compute coordinates
X1, ... , X, Dy solving the special distance geometry problem

| xi —x; =20, (G, Jj)es. (1.4)

This attempt usually fails because the bouéidstend to be inconsistent, but it can
be used to generate an approximate solution. As a resutinthed algorithm may
require many trial choices df ; in [/; ;, u; ;] before a solution to problem (1.4) is
found.

Other algorithms that work with a sparse set of distance constraints do not aim
to solve the distance geometry problem (1.1), but to minimize a potential energy
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function that incorporates distance constraints and other information to determine
the protein structure. For work in this direction, see [15,28].

In our approach, we use Gaussian smoothing to transfbimo a smoother
function with fewer minimizers. An optimization algorithm (the limited-memory
variable-metric codemim is then applied to the transformed function, and con-
tinuation techniques are used to trace the minimizers of the smooth function back to
the original functon. An immediate advantage of our approach is that the work per
iteration is proportional t&, which for sparse distance data should be proportional
to the number of atoma.

Gaussian smoothing was first used, by Scheraga and coworkers [16-18,25,26],
in the diffusion equation method for protein conformation. In that application the
Gaussian transform is usually evaluated by approximating the function and then
transforming the approximation. On the other hand, Moré and Wu [22] showed
that for distance geometry applications we can evaluate the Gaussian transform of
(1.2) directly if the potentiap; ; is a radial function, that is, a function of the form
Pi,j(x) = hi,j(” x |D.

The aim of this paper is to show that continuation algorithms, based on Gaussian
smoothing, can be used to develop an efficient and reliable code for the solution
of the distance geometry problem (1.1). The background needed to understand our
code,dgsol , is presented in Sections 2 and 3. Section 2 outlines the smoothing
properties of the Gaussian transform, while Section 3 presents our proposal to
determine the Gaussian transform by using a discrete Gauss-Hermite transform.

We present an outline afysol in Section 4. Numerical results appear in Section
5. We pay special attention to the choice of continuation parameters because this is
an important and unresolved issue in the use of Gaussian smoothing. Our numerical
results, based on data drawn from the PDB data bank, showgdselt can be used
to determine the structure of protein fragments with up to 200 atoms.

We emphasize that the determination of protein structures from distance data
requires appropriate data and an algorithm to determine solutions to (1.1). The
issue of what distance data is needed has been addressed in several recent papers
[1,15,20,28]. In this paper we do not address this issue, but concentrate on showing
thatdgsol can be used to obtain solutions to the distance geometry problem (1.1)
for a wide range of distance data. To our knowledge, no other algorithm can make
this claim. We plan to conduct additional testing with larger protein fragments and
more realistic distance constraints.

2. Global smoothing

An appealing idea for finding the global minimizer of a function is to transform the
function into a smoother function with fewer local minimizers, apply an optimiz-
ation algorithm to the transformed function, and trace the minimizers back to the
original function. A transformed function is a coarse approximation to the original
function, with small and narrow minimizers being removed, while the overall struc-



222 JORGE J. MOE AND ZHIJUN WU

N
(N
£\
L0OON
AR
1 OSIRKLIN
R

Figure 2.1. The Gaussian transform of a function. The original functibe= 0) is on the left,
while A = 0.3 is on the right.

ture of the function is maintained. This property allows the optimization algorithm
to skip less interesting local minimizers and to concentrate on regions with average
low-function values where a global minimizer is most likely to be located.

The smoothing transform, called the Gaussian transform, depends on a para-
meterA that controls the degree of smoothing. The original function is obtained
if » = 0, while smoother functions are obtained Jagncreases. The Gaussian
transform(f), of afunctionf : R" — R is

1 —x |2
i = e [ rmen(-2 5 o @)
The valug( f); (x) is an average of in a neighbourhood of, with the relative size
of this neighborhood controlled by the parametef he size of the neighbourhood
decreases as decreases, so that whén= 0, the neighborhood is the center
The Gaussian transfortyy’); can also be viewed as the convolution fofvith the
Gaussian density function.

The Gaussian transform is a linear, isotone (order-preserving) operator that
reduces the high-frequency componentsfofMoreover, the Gaussian transform
commutes with differentiation so that the Gaussian transform of the gradient (Hes-
sian) is the gradient (Hessian) of the Gaussian transform. These properties of the
Gaussian transform are not usually shared by other approaches to smoothing. For
additional discussion of these properties, see Wu [31] and Moré and Wu [23,24].

We illustrate the transformation process in Figure 2.1 with a function that is the
sum of four Gaussians. The original function=£ 0) is on the left whilex = 0.3
is on the right. Note that the original function has four maximizers but that two of
these maximizers have disappeared at 0.3, and another minimizer is likely to
disappear ifA is increased further. Figure 2.1 shows that the original function is
gradually transformed into a smoother function with fewer local maximizers and
that the smoothing increasesjaBicreases.
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3. Computing the Gaussian transform of distance geometry functions

Computing the Gaussian transform requires the evaluationdmensional in-
tegrals, but for many functions that arise in practice, it is possible to compute
the Gaussian transform explicitly in terms of one-dimensional transforms. In par-
ticular, we now show that we can compute the Gaussian transform for distance
geometry functions of the form (1.2) if the potentjal; is a radial function, that
is, a function of the fornp; ;(x) = h; ; (Il x |).

Moré and Wu [22] showed that the Gaussian transform for the distance geo-
metry function (1.2) can be expressed in the form

).(x) =
A z; \/_rl]

+o00 1 )
/ (ri,j + As)h; j(ri j + As) eXp —5 s° ) ds

(3.1)

wherer; ; =|| x; — x; |l. This expression is valid for all pairwise potentials of
the formp; ;(x) = h; ; (|| x |). We are interested in the case where the pairwise
potentialp; ; is given by (1.2), so that the function— #; ;(r) is defined by

2 |r?2—12 2 [r?2—u?.
hi ;(r) = min 2 L. 0¢ +maxy ——~ ¢ . (3.2)

i,j

The one-dimensional integrals that appear in (3.1) can be evaluated explicitly in
special cases. In particular, whén, = u;; for all (i, j) € 4, the Gaussian
transform can be expressed [23] in the form

(00 =D [Ulx —x; 12 =82)% + 100 || x; — x; |°] + v,
i,jed

wherey is a constant that depends bn

An interesting property of the Gaussian transform is that the Gaussian transform
(3.1) is infinitely differentiable whenever > 0. On the other hand, the original
potential (1.2), with the pairwise potentig) ; defined by (1.3), is only piecewise
twice differentiable. Moré and Wu [23,24] provide additional information on the
properties of the Gaussian transform.

The one-dimensional integrals that appears in the Gaussian transform (3.1) can
be approximated by Gaussian quadratures. If we use a Gaussian quadratyre with
nodes, we obtain the Gauss-Hermite approximation

(g =) — Z wi(rij + Asihi j(ri.j + i), (3-3)

i,jed Fij k=1

wherew, ands; are standard weights and nodes for the Gaussian quadrature for
integrals of the form

+o00 1
E / g(s) exp(—é s2> ds.
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Figure 3.1. The function[#],, 4, for» =0, 0.5, 1.0, 1.5 ang¢ = 10.

The weights and nodes can be found in the tables of Stroud and Secrest [29] or
computed with thejauss subroutine iORTHOPOL [6].

All of our numerical results are based on the Gauss—Hermite transform (3.3).
We can gain insight into this transformation by noting that

(Flrg®) =Y Thijlag (i),
i,jed
where[h], , is a function of the distancedefined by

q

1
(1hg(r) == D wilr + AsOh(r + Asp).
k=1

The function[4], , agrees with the piecewise twice-differentiable function

2 2 2 2
h(r) :mzin{:,O}erzax{r —u ,0} (3.4)
12 u?

for A = 0, but as) increases, we obtain a smoother version of the function. This
can be seen clearly in Figure 3.1, where we have pldtig¢d, for A = k/2 with
0<k<3,9g=10.

Figure 3.1 suggests thgt], , is convex fora > A, for somei. > 0. This is
not true in general, but holds whénis defined by (3.4). The value af depends
on the bound$ andu, but we do not fully understand this relationship. Fet u,
itis easy to show that, = u/+/5. Plots ofiA],_, for I < u suggest that, < +/2u,
and therefore

he € [% ﬁu]
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This is consistent with Figure 3.1, whefe= 1, u = 2, and[h], , is convex for
A =15.

The value ofi. is important because [#; ;1 , is monotone and convex for
r > 0and (i, j) € 4, then the Gauss—Hermite transform (3.3) is convex. This
is usually undesirable; a preferable strategy is to chaose that only some of
the functions(#; ;1, , are convex. We will return to this point when we discuss
numerical results.

4. Optimization algorithms

The algorithm that we use to solve the distance geometry problem (1.1) searches
for a global minimizer of the function defined by (1.2) and (1.3) with a continu-
ation algorithm based on the Gauss-Hermite transfofm ,. Given a sequence of
smoothing parameters

Ao>Ayp>---> A, =0,

the continuation algorithm uses a local minimization algorithm to determine a
minimizer xi41 of (f),.4. The local minimization algorithm uses the previous
minimizerx; as the starting point for the search. In this manner a sequence of min-
imizersxy, ..., xp4+1 IS generated, withr,,; a minimizer of f and the candidate

for the global minimizer. Algorithmigsol specifies the continuation algorithm.

Algorithm dgsol
Choose a random vectog € R”*3,
fork=01...,p
Determinex; 1 = locmin ((f)x,.4, X)-
end do

In our notationjocmin ({f)y,.4, X&) is the minimizer generated by a local minimiz-
ation algorithm with the starting point,. The local minimization algorithm has to
be chosen with some care becayge, , is not twice continuously differentiable.
The Hessian matrix is discontinuous at points where the argumént abincides
with either/; ; oru; ;. We cannot expect to avoid these discontinuities, in particular,
if ; ; andu; ; are close.

Forlocmin we used a limited-memory variable metric algorithm of the form

Xpp1 = X — apH V f (x),

wherew;, > 0 is the search parameter, and the approximafiprto the inverse
Hessian matrix is stored in a compact representation that requires the storage of
only 2n, vectors, where, is chosen by the user. The compact representatidf, of
permits the efficient computation &f;,V f (x;) in (8n, + 1)n flops, where: = 3m

is the number of variables; all other operations in an iteration of the algorithm
require 1% flops.
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We used the variable-metric limited-memory cogeim in MINPACK-2. For
additional information on this code, see

http://www.mcs.anl.gov/home/more/minpack?2

The performance of themim code depends on the amount of memory specified
by n, and on the tolerances andzt,. We usedn, = 10. The tolerances, and

7, specify the accuracy of the minimizemlim terminates with an iterate if the
code decides that either the relative convergence test

1) = fOED < Tl fD)]

or the absolute convergence test

max{|f ()], [f(xH} <

is satisfied for some minimizet* of f. In our numerical results we used= 1, =
10-8, which are not considered stringent values.

The random vectar, € R”*3 used for algorithmigsol depends on the distance
data. In particular, we chose the coordinatess R® of the starting point so that
| x; —x; ||= 8, ; for some(i, j) in 4. Algorithm struct specifies the starting point

Algorithm struct

SetlL ={1,...,m}.

do until £ is empty
Choose € L.
SetM; ={j: (i,j)ed, jeL)
For eachj € M;, generatex; € R3 such that] x; — xj =46 ;.
Removei from L.

end do

The starting point generated by this algorithm satisfies at kast 1 distance
constraints, where: is the number of atoms. Thus, the starting point is a solution
to the distance geometry problemdifcontains less tham constraints.

We also experimented with starting points that were chosen randomly, but since
our results were not strongly dependent on the method used to generate the starting
points, we present results for only the method specified above.

5. Computational experiments

In our computational experiments we studied the distance geometry problem (1.1)
with the pairwise potentiap; ; defined by (1.3). We used thigsol algorithm as
outlined in Section 4 and the Gauss—Hermite transform (3.3)gvith10 nodes in
the Gaussian quadrature.

We testeddgsol on data derived from protein fragments of a DNA-binding
protein [10,27] available (ID code 1GPV) in the PDB data bank. We considered
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protein fragments with 100 and 200 atoms. For each fragment, we generated a set
of distanceqs; ;} by using all distances between the atoms in the same residue as
well as those in the neighbouring residues. FormallR,ifs thek-th residue, then

8 ={0J): xi e Ry, x; € (Ry URy41)} (5.1)

specifies the set of distances. This is not the only way to generate the spafse set
For example, Le Grand, Elofsson, and Eisenberg [20] gendrhtesetting

S={G. ) llxi—x;lI<c} (5.2)

for some cutofic < 0.

The main aim of the computational experiments is to show thaddbel code,
which is based on Gaussian smoothing, provides a reliable and efficient approach to
the solution of the distance geometry problem (1.1). In our computational results,
a set of coordinates € R"*? solves the distance geometry problem (1.1) if

A—-t)lij <llxi —xj IS ujA+10), (G, ])) €38, (5.3)

for some tolerance,. We usedr, = 1072 since this tolerance reflects the accuracy
available for bond lengths [5].

A secondary aim of the computational experiments is to study the dependence
of the solution structures on variations on the bouhdsndy; ; by setting

lij=Q-¢)dj, uij =A+¢e)s;, (5.4)

for somee e (0, 1). With this formulation, we are able to study the behavior
of the structures as varies over(0, 1). We variede over [0.04, 0.16] since this
translates into a 4-16% deviation from the expected value for the bond length.
These variations seem to be typical [5].

In many of our numerical results we examine the performancdgsedl ase
and vary. Indgsol we use uniformly spaced smoothing parameters

k
)»k=)»0<1——), nggp
p

The numberp of continuation steps was set to

p = [20%0].

This choice implies that the separatiop,; — A, between consecutive smoothing
parameters is about 0.05.

The choice ofq is important. If we start with.g large, then all the information
in the function is destroyed, and it is difficult to trace multiple paths. If we choose
Ao small then( f),,,, Will have many minimizers. Choosing, so that(f),,, has
a few minimizers allows us to trace multiple paths, and thus increases the chances
of determining a global minimizer.
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Areasonablé, is obtained if half of thé#; ;1,, , are not convex. This provides
an automatic choice foxg that is not large and that works well. We can determine
Ao by recalling that (see Section 3) for each functign there is ak; ; such that
[A; ;11,4 Is convex ford > A; ;. We use

1 L —1
Aij = (75 oij + V21 - Pi,j)) Uij, Aij = ﬁ,
ij

which specifies that; ; is a convex combination of/4/5 andv/2. If [; ; = u, ; then
Aij = 1/+/5, which we know guarantees convexity [@f ;1,.4. This observation
is important because our datg, ~ u; ;. We have verified, by plots d; ;1,4
similar to those in Figure 3.1, that for this choicelgf;, the function[h; ;1,4 is
convex fori > 4, ;. It would be interesting to obtain a formal proof of this result.
A, future implementation, we will also use ; = Ii—/J to avoid dividing a zero in
caseu; j = 1. ’

Given ; ; as defined above, we now choaosgas the median of all th; ;.
With this choice, half of the pairwise functions, ;1,,, should not be convex.
Hence, the initial functiori f),, , is smooth but not necessarily convex.

5.1. EXPERIMENT 1

In our first computational experiment we compagsol with vmim from a set

of 100 random starting points generated by algorituuct of Section 4. We did

this comparison because multi-starts with a local optimization code is a standard
approach to solving global optimization problems. Comparisons with simulated
annealing and genetic algorithms would also be of interest but are unlikely to
perform better than multi-starts unless they also rely on optimization software to
produce accurate structures.

We conducted two tests with = 0.04, one withvmim and the other with
dgsol . We compare the quality of the solutions obtainedvbym anddgsol by
computing the potential function (1.2) at the final iterate of the algorithm. These
function values are then sorted and plotted in Figure 5.1.

An immediate observation that can be made from Figure 5.1 is that the potential
function (1.2) has at least 100 distinct minimizers. We justify this observation
by noting that all the minimizers obtained by th@im algorithm have distinct
function value. This observation is of interest because it is usually difficult to find
the global minimizer when the optimization problem has many minimizers.

The results in Figure 5.1 show that thalm algorithm fails to find the global
minimizer in all cases. This is perhaps not surprising becausenitme code is a
local minimization algorithm. Nevertheless, we expected to find the global solution
in at least a few cases. However, the results in Figure 5.1 showrtthat is able
to find only local minimizers with relatively high function values; in all cases the
potential function value is at least 0.5.
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Figure 5.1. Potential function values for multi-stannim anddgsol for ¢ = 0.04.

The results in Figure 5.1 also show that the smoothing approadisolf works
quite well for this problem and is able to find the global solution in 41 cases. Also
note that in all casedgsol finds a global minimizer or a local minimizer with low
function value.

5.2. EXPERIMENT 2

In our second experiment we compare the performance of the multivatant

with dgsol for problems withe > 0 and for both the 100-atom and 200-atom frag-
ments. In each case we used the 100 random starting points generated by algorithm
struct of Section 4 and counted the number of (global) solutions found by each
algorithm. Recall that for these results we count a set of coordinateR™ 3 as a
solution to the distance geometry problem (1.1) if (5.3) is satisfied wyith 1072.

Results for this experiment appear in Table 5.1.

Table 5.1.Distance geometry solutions obtained bwyim and

dgsol
100-atom fragment 200-atom fragment
e vmim dgsol € vmim dgsol
0.04 1 80 0.04 0 41
0.08 1 74 0.08 0 66
0.12 8 100 0.12 2 97
0.16 47 100 0.16 9 100
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The results in Table 5.1 show thddsol is significantly more reliable than the
multi-startedvmim for both the 100-atom fragment and the 200-atom fragment.
For both algorithms the reliability increases withThis result is to be expected
because as increases, the measure of the solution set also increases. In other
words, if x € R”" satisfies (1.1) for; ; andu; ; specified by (5.4), then also
satisfies (1.1) for all largex.

Note that the reliability of both algorithms decreases as we go from the 100-
atom fragment to the 200-atom fragment. This result is to be expected because
the number of minimizers of the distance geometry problem also increases as the
number of atoms increases.

We emphasize that we have been usiiggol with 100 starting points to test
the reliability ofdgsol . In practice we can expect to find a global minimizer after
at mostsix starting points. This rule of thumb is justified by the results in Table 5.1,
which show that in all cases we have 40% reliability, and thus a standard calculation
shows that after six trials we have a 95% chance of finding a global minimum.

5.3. EXPERIMENT 3

In general, the distance geometry problem (1.1) can have many solutions, so there
iS no reason to expect that the structures generatethdny will agree with the
structure that was used to generate the data. In this experiment we study the rela-
tionship between the structures obtained for varioaad the original data.

We compare structures by measuring the deviation between the coordinates
and the distances for the generated structure and the original structure. A stand-
ard measure for comparing structures is the coordinate RMSD (root-mean-square-
deviation)

” 1/2
1

Ec = min (— > lyi—0x ||2> : 0 € R®3, orthogonalt , (5.5)
m

i=1

wherem is the number of atoms in the structure. Optimal superposition by transla-
tion is assured if the structurés;} and{y;} are translated so their center of gravity

is at the origin. In Table 5.2 we present the results of compuindor the global
solutions found byigsol .

The computation of the coordinate errBg is known as the orthogonal Pro-
crustes problem in the numerical analysis literatiig;can be computed accur-
ately and efficiently from the singular value decomposition of the 3 matrix
XTy,whereX = [x1,...,x,]andY = [y1, ..., y.]. For details see, for example,
Golub and VanLoan [9, page 582].

The coordinate erroE is commonly used to measure the deviation between
structures. In particular, many researchers require that structures hayecdri—

2 A to be considered similar, while others only require Bn of 2-3 A. These
criteria are not universally accepted sinEg has a number of deficiencies. In
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Table 5.2.Coordinate erroiE¢ for 100-atom (left)
and 200-atom (right) fragments

Ec¢ (RMSD) Ec (RMSD)
€ Min Ave £ Min  Ave

0.04 0.063 0.067 0.04 15 17

0.08 0.11 0.12 008 15 1.9
0.12 0.27 0.60 012 14 22
0.16 0.37 1.0 0.16 0.7 29

particular, E¢ is dependent on the scaling of the coordinates. For a discussion of
these deficiencies, see Mairov and Crippen [21].

If we accept the view that proteins witA- of 2-3 A are similar, then the
results in Table 5.2 show that, on the averaiyspl is able to find structures that
are similar to the original structure. If we adopt the more stringent criterion that
structures withE- of 1-2 A are similar, then our results show thigisol finds
structures that are similar if < 0.08, that is, if the lower and upper bounds differ
by about 16%. If we increasepast 0.08 then the averagk. becomes larger than
2 A, but, as shown by the smalle&t, we are still able to find similar structures.

We did not expect to find small values fB¢ since our data does not include all
the distances, but only the distances between successive residues in the sequence.
Moreover, note that we are not including all the distances within a given cutoff, as
when the sparsity set is specified by (5.2).

5.4. EXPERIMENT4

In the last experiment we did not consider the performanatgsdl . Instead, we
wanted to verify, computationally, that the number of minimizers of the Gauss—
Hermite transform( f), , decreases asincreases. This experiment is interesting
from a theoretical viewpoint because it provides insight into the smoothing ap-
proach. We usedmim with the 100 random staring points generated by algorithm
struct on the 200-atom fragment.

The number of distinct minimizers found bynim is plotted in Figure 5.2. For
these results, minimizeng andx; of (f), , are declared to be the same if

(g (D) = (g (2] < 7 maX|{(f)ag D], (g2},
wherer, = 1079, or if

max{|(f)iqxDl, [{(frq(x2I} < Ta,

wherer, = 1072. In other words, the minimizers are declared to be equal if they
are smaller tham,, or if they are larger thag, and their relative error is at most.
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Figure 5.2. Number of minimizers of f), 4 as a function of. for ¢ = 0.04.

The number of minimizers is sensitive to the choice,aindz,, but the general
trend is clear. The results in Figure 5.2 show that, as predicted by the theory, the
number of minimizers of /), , decreases asincreases. Also note that the initial
drop in the number of minima is dramatic avaries in(0, 1).

6. Concluding remarks

Our computational results suggest that protein structures can be determined by
solving a distance geometry problem withsol and that the approach based on
dgsol is significantly more reliable and efficient than multi-starts with an optim-
ization code. Our results also raise a humber of interesting issues that we plan to
address in future work. In particular, we wish to expand our testing to larger protein
fragments (possibly a complete protein) and to distance data generated from NMR
experiments. Another interesting issue is the dependence of the structures on the
distance dat a. From a mathematical viewpoint, we do not know when structures
can be determined uniquely with exact, but incomplete distance data. For some
results in this direction, see Hendrickson [13,14].
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